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       Abstract 
 

 

Concentrations of Cd, Pb, Zn, Ca, Sr, Al, Fe, Ti, Fe and Mn were determined in bone samples from human 
skeletons dating back to the Late Medieval Period from Pianosa Island (Grosseto, Italy) and to the Eneolithic 
(i.e. the Copper Age) from the Lunigiana region (municipality of Cassola, Massa Carrara, Italy), in order to 
obtain insights into diet, heavy metal contamination and differences in accumulation between humerus and 
femur. The influence of diagenetic processes, which alter archaeological remains within their burial 
environment, was evaluated by multivariate statistical analysis, comparing trace element concentrations both 
in bone and in soil still present in the humerus and femur. This method and Sr:Ca and Zn:Ca ratios provided 
reliable information on diagenetic processes and diet in the two periods and enabled assessment of 
accumulation of heavy metals (Cd, Cu, Pb).The results indicate that diagenesis did not influence 
concentrations of Pb, Cu, Zn, Ca or Sr, and that there was no significant difference in accumulation of these 
elements between humerus and femur.  Sr:Ca and Zn:Ca ratios indicated vastly different diets in the two 
periods. The occurrence of  high levels of Cu (1368.64 mg/kg d.w.) in a humerus from the Copper Age 
sample possibly due to exposure during copper smelting, was a very interesting outcome. 
 

 
1 Introduction 
 

Certain elements (Ca, P, Zn, Cu, Mn) are essential for growth and bone modelling, whereas others become 
part of bone structure through ion exchange with normal chemical components of hydroxyapatite (Ca, P, H) (Giblin, 
2004).  This process is essential for homeostasis of minerals, since the skeleton acts as a reserve from which ions are 
released and deposited according to the body’s needs. Exposure to contaminants can be evaluated and diet studied 
due to the fact that various elements with different distributions in various food sources accumulate in different 
proportions that depend on diet. Palaeonutritional research is increasingly demonstrating the potential of trace 
element analysis in human bone for reconstructing diet.   
 

For correct interpretation of the results of such analyses the following criteria should be observed (Beck, 1985): 

- Existence of a direct relation between dietary levels of an element and bone levels; 

- Concentrations sufficient to enable accurate and consistent measurements; 

- Element concentrations not affected by disease, or evidence of the pathology affecting concentrations in the 
remains; 

- Constant element concentrations in adulthood; 

- Exclusion of diagenetic phenomena. 
 

The latter point is particularly important for ancient skeletal remains, in which accumulation of trace elements 
due to physiological processes (biogenesis) may not be the only factor involved in accumulation.  Indeed, after death, 
the bone matrix is still in a dynamic state with its environment in a biogenetic-diagenetic continuum (Sandford, 1992; 
Von Endt, 1984).  Diagenesis includes all physical, chemical and biological processes that alter archaeological materials 
where they are buried (Wilson and Pollard, 2002).   
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Continuous stoichiometric variation in composition is caused by absorption or release of ions, altering the 
molecular structure of bone, often making it difficult to study palaeodiet and contaminants.  Not all elements vary to 
the same extent or in the same way (enrichment or depletion). In evaluating the influence of any diagenetic 
contaminants, many authors consider it advisable to express trace elements in terms of calcium (Price and Kavanagh, 
1982; Sillen and Kavanagh, 1982; Schoeninger, 1982; Ericson et al., 1991). However, element:calcium ratios imply that 
loss or enrichment of calcium involves similar loss or enrichment of other elements.  Since calcium is subject to 
frequent alterations post mortem (Lambert et al, 1982; Price et al., 1985), ratios with elements less subject to 
diagenesis may be problematical. Considering the particular diagenetic behaviour of calcium, Bacci et al. (2008) limited 
the application of correction methods to few, well-defined cases: 
 

1. elements that are normally non diagenetic, such as strontium and zinc, may only be standardized to calcium when 
calcium is not subject to diagenetic alterations; 
2. elements that are normally diagenetic, such as copper and magnesium, may only be expressed in relation to calcium 
when they and calcium have undergone diagenetic variations of the same nature (enrichment or depletion); 
3. “site correction”, consisting in correlating Sr:Ca and Zn:Ca ratios of human samples with those of herbivores and 
carnivores coeval with humans in the same site, is only possible when human calcium and that measured in the bones 
of animal remains on the site have undergone diagenetic variations of the same nature (enrichment or depletion). 
 

In the present study we investigated concentrations of Cd, Pb, Zn, Ca, Sr, Al, Fe, Ti, Fe and Mn in bone 
samples from human skeletons dating back to the Copper Age from the Lunigiana region (municipality of Cassola, 
Massa Carrara, Italy) and to the Late Medieval Period from Pianosa Island (Grosseto, Italy). The objective was to 
obtain insights into diet, heavy metal contamination and differences in accumulation between humerus and femur. 

 

Interestingly, femurs of the Medieval specimens contained soil, allowing for comparison of trace element 
concentrations in the bones, on the one hand, and in the burial earth on the other. To evaluate diagenetic alterations 
we used a statistical approach based on principal component analysis and correlation matrices, comparing trace 
element concentrations in bones and in the soil within the bones. To evaluate diagenetic effects, the data could not be 
standardized in relation to calcium because the individuals were of different ages.  Since accumulation of certain 
elements depends on exposure time, high concentrations due to accumulation over a lifetime could be corrected 
erroneously.  Likewise, “site correction” was not possible because no animal remains were found. 

 

We used element:calcium ratios to evaluate and interpret information about palaeodiet only after determining 
the influence of diagenesis on calcium.  We also calculated Sr:Ca and Zn:Ca ratios to use these elements as food 
markers.  Sr and Zn are generally relatively unaffected by diagenesis (Lambert et al., 1983; Price et al., 1985; Sillen, 
1981) and are representative of prevalently vegetarian  and prevalently carnivorous diets (Lambert, 1984; Sillen and 
Kavanagh, 1982; Hatch and Geidel, 1985; Busetto et al., 2008).  
 

2 Materials and Methods 
 

2.1 Archaeological evidence 
 

2.1.1 The Copper Age specimens 
 

The human remains from which the samples were collected, have been found in a small cave called  Tana della 
Volpe (Fox Den). This is located near the better known Tecchia which is a part of the imposing karst system of the 
Grotte di Equi Terme in the municipality of Casola (Massa-Carrara, Tuscany) (Fig. 1).  Tana della Volpe was excavated in 
the 1960s and is a typical Eneolithic “natural sepulchral cave”. Skeletal remains of about 30 individuals were recovered 
(Formicola 1980) together with grave goods consisting of arrowheads, ornaments and pottery, whose typological 
characteristics suggest an attribution of the whole complex to the Middle Copper Age. The Copper Age corresponds 
to the maximum spread of the phenomenon of Megalithism in Western Europe and, in Lunigiana, at the same period, 
many Stele-Statues were erected.  The study of the anthropological features and customs of the individuals buried at 
Tana della Volpe is therefore of particular interest because this group is a representative sample of the people who 
conceived and built the intriguing and still mysterious Stele-Statues of Lunigiana. 
 

2.1.2 The Medieval specimens 
 

Samples for analysis were collected from several human skeletons recovered from the necropolis of Cala San 
Giovanni on Pianosa Island (Tuscany) (Fig.1), which was excavated between 2007 and 2010 by the Archaeological 
Office of Tuscany in collaboration with the University of Siena.  
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The necropolis (which is close to some findings belonging to a Roman villa) can be referred to the late 
Medieval Period on the basis of both burial typology and rare materials but especially on the basis of 14C dating, 
carried out on a bone sample from individual no. 1157, which yielded the following date:  

 

Beta-297581 conventional radiocarbon age 930±30 BP, 2 sigma calibrated result Cal AD 1030 to 1170 (Cal 
BP 920 to 780). The necropolis was possibly used over a long period.  The tombs were pits lined with stone slabs and 
the corpses were covered with earth and sealed with other slabs.  Late imperial coins found in the covering earth of 
the burials can be considered as a terminus post quem for the excavation of the graves themselves and confirm the above 
14C chronology. 
 

                 Figure 1 - Location of archaeological sites:  A) Tana della Volpe; B) Pianosa Island. 
 

2.2 Sampling of Bone and Soil for Spectro photometric Analysis 
 

Samples from the cortex of the tibia or femur is generally recommended for palaeonutritional analysis 
because this bone shows more homogeneous individual analytical values than trabecular bone, which is more subject 
to soil contamination (Bartoli, 2005). Cortical bone is remodelled much more slowly and is therefore suitable for 
studying long-term accumulation (Sillen and Kavanagh 1982).  Medieval samples were obtained from femurs and 
humeral bones  to determine differences in accumulation in a given individual. Copper age bone samples were 
obtained from five different individuals (Table 1).   

 

Samples were obtained by mechanical abrasion of a portion of cortical bone with an acid-cleaned burr, 
previously tested on animal bone.  Sampling was conducted in three steps: 
 

1. The sampling area of bone was chosen and an area measuring 0.5 x 1 cm was defined, from which 2-3 mm of 
bone, where diagenesis is strongest, was removed by abrasion and discarded.  Trace element enrichment by 
diagenesis decreases from the bone surface inwards (Mannino, 2009; Takata, 2005).  Removal of the outer 
surface increases the probability of measuring trace elements due to bioaccumulation in life. 

2. The predefined area was abraded and the powder collected in a 50 mg Eppendorf flask. 

3. Where present, soil samples were obtained from inside femurs and humerus bones.  The soil samples were 
dried completely at 35°C. Coarser material was removed and the soil was homogenized in an agate mortar. 
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The number of bone and soil specimens sampled is shown in Table 1. 
 

Table 1 - Number of individuals, bone and soil specimens sampled for Copper Age and Late Medieval 
Period. 

 

Age no. 
individuals 

Bone type  no. bone samples   no. soil inside bone samples 

Late Medieval 
Period 

12 humerus  6 2 

femur  12 6 

Copper Age 5 humerus 2 1 

femur  3 0 
 

2.3 Preparation of samples and spectrophotometric analysis 
 

2.3.1 Mineralization of bone samples 
 

Aliquots of about 0.1 g of bone were placed in teflon containers and spiked with 2 ml nitric acid and 0.5 ml 
hydrogen peroxide analytical grade for acid digestion. The containers were loaded in pressure-sealed steel blocks and 
held at 160°C for 12 h.  The clear solutions obtained were transferred to polyethylene test tubes and made up to 10 
ml.  The following elements were analysed in these solutions:  Pb, Cu, Cd, Ni, Cr, Sr, Ti, Al, Fe, Ca and Mn.  A blank 
was included in each series to verify the purity of reagents, together with standard reference material (Bovine Liver 
n.1377b from NIST, Gaithersburg, MD - USA) at certified concentrations to determine analytical accuracy. To 
calculate metal concentrations we used the method of internal additions:  to equal aliquots of the same sample we 
added increasing quantities of a solution containing known concentrations of the metals to analyse. 
 

2.3.2 Mineralization of soil samples 
 

The method is based on dissolving heavy metals in hot nitro-hydrochloric acid attack.  Aliquots of about 0.1 g 
of dried and homogenized soil samples were placed in teflon containers, spiked with 0.3 ml hydrogen peroxide and 
left to react for 20 min.  Then 0.9 ml HCl and 0.3 ml HNO3 was added for mineralization and the containers were 

loaded in sealed steel blocks at 160°C for 12 h. All reagents were analytical grade.  The resulting solutions were 
transferred to plastic test tubes, made up to 10 ml and analysed by atomic absorption spectrometry.  Each series 
contained a blank to check reagent purity and six tests of standard reference materials (Montana Soil n.2710 from 
NIST, Gaithersburg, MD - USA) to test accuracy. Concentrations of metals were calculated by the method of internal 
additions: to equal aliquots of the same sample, increasing quantities of a solution containing the metals to be 
analysed, at known concentrations, were added. 
 

2.3.3 Analytical determinations 
 

The instruments used for trace element analysis were: 
 

1. Analytic Jena Contra 700 atomic absorption spectrophotometer with graphite furnace for Cd, Pb, Ni and Cr; 
2. ICP-Plasma Perkin Elmer Plasma 5100DV emission spectrometer for Zn, Mn, Fe, Cu, Al, Ti, Ca, Cu and Sr. 
2.4 Statistical analysis 
 

Graphs and descriptive statistics were obtained using GraphPad Software 1992-2003.  The graphs show means and 
standard deviations on error bars. Significant differences are indicated by an asterisk. The data was processed by PCA, 
Spearman correlation test, Kruskall Wallis test and Mann Whitney U test using STATISTICA StatSoft. Inc 2007 
software. 
 

3 Results And Discussion 
 

3.1 Concentrations of trace elements 
 

Tables 2 and 3 show concentrations of Zn, Fe, Mn, Al, Ti, Ni, Cr, Cu, Pb, Sr and Cd in mg/kg d.w. and Ca as 
percentage in bone of Late Medieval and Copper Age samples. 
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Table 2. Concentrations of Zn, Fe, Mn, Al, Ti, Ni, Cr, Cu, Pb, Sr and Cd in mg/kg d.w. and Ca as percentage in bone 

of Late Medieval samples. 
 

ID Zn Fe Mn Al Ti Ni Cr Cu Pb Sr Cd Ca % 

Humerus 
(n=6) 

            

Mean 139.25 157.55 19.65 288.69 7.70 3.97 12.90 20.76 42.11 580.33 0.19 38.85 

S.D. 46.55 183.74 19.00 275.70 9.89 0.98 3.49 7.66 67.61 281.62 0.21 1.89 

Femur 
(n=12) 

            

Mean 93.50 171.94 13.97 267.94 6.13 5.19 15.25 22.92 15.25 631.28 0.09 37.45 

S.D. 26.81 163.61 9.68 226.05 4.13 3.62 8.82 19.65 10.39 252.06 0.10 2.66 
 

Table 3. Concentrations of Zn, Fe, Mn, Al, Ti, Ni, Cr, Cu, Pb, Sr and Cd in mg/kg d.w. and Ca as percentage in bone 
of Copper Age samples. 
 

Bones Zn Fe Mn Al Ti Ni Cr Cu Pb Sr Cd Ca% 

Humerus 
(n=3) 

            

Mean 224.2
8 

174.
44 

227.01 301.52 2.99 14.5
9 

10.0
4 

506.9
3 

1.59 305.
51 

1.97 38.89 

S.D. 96.95 84.3
9 

138.16 217.46 4.81 11.5
9 

3.48 747.6
4 

0.51 24.6
9 

2.44 3.52 

Femur (n=2)             

Mean 144.4
8 

183 39.03 337.55 3.31 2.77 6.25 33.27 1.32 282.
78 

1.06 37.02 

S.D. 78.98 213.
07 

39.17 243.3 4.43 0.69 1.66 10.91 0.04 7.57 0.2 2.05 

 

Tables 4 and 5 show concentrations of Zn, Fe, Mn, Al, Ti, Ni, Cr, Cu, Pb, and Cd in mg/kg d.w. and Ca as percentage 
in soil samples obtained from inside the bones.  
 

Table 4. Concentrations of Zn, Fe, Mn, Al, Ti, Ni, Cr, Cu, Pb, Cd in mg/kg d.w. and Ca as percentage in Late 
Medieval soil samples (n=8) obtained from inside the bones. 
 

Soil (n=8) Zn Fe Mn Al Cu Ti Cr Ni Pb Cd Ca % 

Mean 38.30 8727.37 248.37 14097.34 21.15 392.35 74.88 281.43 64.00 0.05 17.19 

SD 10.64 3261.51 87.44 6298.46 12.07 150.04 31.62 185.87 38.70 0.01 2.51 
 

Table 5. Concentrations of Zn, Fe, Mn, Al, Ti, Ni, Cr, Cu, Pb, Cd in mg/kg d.w. and Ca as percentage found in 
Copper Age soil samples (n=1) obtained from inside a bone.  
 

Soil (n=1) Zn Fe Mn Al Cu Ti Cr Ni Pb Cd Ca % 

Single 
measurement 

252.70 7341.39 878.46 14743.88 63.99 265.45 38.09 105.99 18.06 0.65 19.76 

 

3.2 Diagenesis 
 

Before any further analysis or discussion of the results we assessed the influence of any diagenetic processes.  
Many authors consider it appropriate to express trace elements in relation to calcium (Price and Kavanagh, 1982; 
Schoeninger, 1982; Ericson et al., 1991). In the present study we did not standardize the data by element:calcium 
ratios because the individuals whose bone we studied had different ages and as accumulation of certain elements 
depends on exposure time (Miculescu et al., 2011), high concentrations due to accumulation could have been 
erroneously corrected.  Nor did we do site correction as suggested in the literature (Bacci et al., 2008; Bisel et al., 1980) 
because we had no faunal  remains from the same sites. 
 



36                                                                       Journal of Anthropology and Archaeology, Vol. 5(2), December 2017 
 
 

To evaluate diagenetic alterations we used a statistical approach based on correlation tests and multivariate 
methods (PCA), comparing trace element concentrations measured in bones and in soil removed from inside bones.  
Because it was possible to obtain soil from inside femurs and humerus bones of subjects living in the Late Medieval 
Period, we were able to check the similarity or otherwise of trace elements in these different matrices. Principal 
Components Analysis showed that soil and femurs formed two well-defined groups in different quadrants (Fig. 2), 
indicating that the concentrations present in the two matrices were quite distinct. 

Figure 2 -  Projection of cases in the factor plane according to concentrations of Zn, Fe, Mn, Al, Ti, Ni, Cr, 
Cu, Pb, Sr, Cd and Ca in soil and bones. 
 

Projection of the variables (element concentrations) on the factor plane of the first two factors (Fig. 3), which 
explained 86% of the variance, showed that the components representing Ca, Sr, Zn, Cd, Ni and Cr were in different 
quadrants from the components representing lithogenic elements (Al, Fe, Mn, and Ti), which though clustered were 
not significantly correlated. The components representing Cu and Pb were in the same quadrant as lithogenic 
elements and irrespective of any statistically significant correlation, this could indicate a modest influence of diagenetic 
processes. 

 

Figure 3 - Projection of the variables (Zn, Fe, Mn, Al, Ti, Ni, Cr, Cu, Pb, Sr, Cd and Ca concentrations) on 
the factor plane determined by bones and their respective soil samples. 
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The absence of correlations between Ca, Sr, Zn, Cd, Ni, Cr, Cu and Pb and the group of lithogenic, and 
typically diagenetic elements, sustained the hypothesis that the influence of diagenetic processes was weak, if not 
absent. On the other hand, highly significant correlations between Al and Fe (R=0.88 p<0.01), between Ti and Fe  
(R=0.97 p<0,001) and between Ti and Al (R=0.83 p<0.05) indicated a possible common source (soil) that may have 
been due to diagenetic enrichment. These results suggest the hypothesis of absence or limited influence of diagenetic 
processes for elements such as Pb, Zn, Cu, Sr, Ca, Ni, Cr and Cd. Principal components analysis and correlation 
matrices applied to bones with soil inside them showed which elements underwent depletion (negative correlation) 
and enrichment (positive correlation).  This statistical approach proved to be valid and useful for interpreting the 
influence of diagenetic processes in ancient skeletal specimens. 

 

Since processes of enrichment or depletion of Ca, Cd, Zn, Sr, Cu, Pb, Cr and Ni were excluded, it was 
unnecessary to correct the data with calcium ratios (as reported in the literature) to assess the influence of any 
diagenetic contaminants (Price and Kavanagh, 1982; Sillen and Kavanagh, 1982; Schoeninger, 1982; Ericson et al, 
1991). The element:calcium ratio assumes that any loss or enrichment of calcium involves similarly intense losses or 
enrichments of other elements.  However, use of this correction method for the data of certain elements may be 
erroneous if the data sample does not belong to individuals of the same age and who therefore have not undergone 
bioaccumulation for the same periods of time.  Some individuals could also have been exposed to high inputs of 
certain elements (smelting of mineral ores and forging of metal artefacts out of Pb, Cu and so forth) that could be 
mistaken for diagenetic enrichment. 
 

For Copper Age specimens it was not possible to do statistical analysis of femur and soil samples to detect 
any diagenetic processes because only one soil sample was available.  We can nevertheless exclude strong depletion or 
enrichment because Ca concentrations in femur samples of the two epochs reflected normal concentrations of human 
bone (Takata et al., 2005; Busetto et al., 2008) (Fig. 4) and were also higher than those measured in soil samples 
(Tables 2 and 4).  After dissolution of soft tissue, bones usually reach a state of chemical equilibrium with the 
surrounding earth (White and Hannus, 1983).  Had there been input from the soil, balancing or enrichment between 
bone and soil concentrations would have been detected. 

Figure 4 - Calcium concentrations in Copper Age and Late Medieval remains and in modern humans (Takata et al., 
2005).  
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Figure 5 -  Concentrations of Zn, Sr, Cu, Pb, Cd, Ni, Ca and Cr (mg/kg d.w.) in femur and humerus samples of the 
same individuals (n=6) . 

The hypothesis of enrichment for the very high copper concentration (1368.64 mg/kg d.w.) measured in one 
humerus sample was excluded because the other bone samples and the soil sample showed much lower 
concentrations (25.54 - 121.45 mg/kg d.w. for bone and  63.99 mg/kg d.w. for soil). 
 

3.3 Comparison of humerus and femur 
 

In case physiological accumulation of trace elements differed in different bones of the same individual, we 
compared concentrations recorded in femurs and humerus bones.  Since we did not have both bones of the same 
individual in Copper Age specimens, we only compared Late Medieval specimens.  As expected, calcium 
concentrations in the different long bones did not differ, since in the absence of diagenetic depletion and enrichment, 
the physiological process of hydroxyapatite formation is practically uniform throughout the skeleton (Bratter et al., 
1977). The absence of significant differences in concentrations of Zn, Sr, Cu, Pb, Cd, Ni, Ca and Cr between femurs 
and humerus bones (Fig. 5) suggests that these elements accumulated and were distributed evenly in the two districts.  
The other elements (Al, Fe, Mn and Ti) were not considered because they are influenced by diagenetic processes. 
 

Although concentrations of Pb in humerus bones were highly variable (42.11 ± 67.61 mg/kg d.w.), they were 
higher than those in femurs (11.38 ± 5.61 mg/kg d.w.).  This slight difference in accumulation could be due to 
differences in physiological accumulation since metabolic turnover may change in different districts, modifying 
concentrations of trace elements (Bratter et al., 1977) or to minor diagenetic enrichment.  The more robust nature of 
femurs compared to other bones generally means that the bone is better conserved and resists diagenetic phenomena.  
The choice of sample is therefore fundamental for obtaining reliable paleonutritional data (Bartoli and Bacci, 2009). 
 

3.4 Comparison of epochs 
 

Concentrations of elements were compared between the two epochs, but for the Copper Age not only data of 
femur samples was used but also data of humerus samples belonging to different individuals.  Figure 6 does not show 
appreciable differences between concentrations of Ca, Fe, Al, Ti, Ni and Cr, whereas statistically significant 
differences were found for Mn, Pb, Cd, Cu and Zn. 
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Figure 6 -  Concentrations of Zn, Fe, Mn, Al, Ti, Ni, Cr, Cu, Pb, Sr and Cd in mg/kg d.w. and Ca expressed 
as percentage in femurs and humerus bones from the Copper Age (n=5) and femurs from the Late Medieval Period 
(n=12).   
 

The significantly higher concentrations of Pb found in femurs of Late Medieval samples (15.25 ± 10.39 
mg/kg d.w.) (Mann-Whitney U test; U = 0; p<0.01) than in Copper Age samples (1.48 ± 0.39 mg/kg d.w.) could be 
due to different social and dietary customs of the two populations.  Indeed, the Medieval diet was mixed and balanced 
with a predominance of plant foods compared to the diet rich in animal protein of the Copper Age (Bartoli & Bacci 
2009).  These lead concentrations are, however, lower than those found in Roman samples, a period when exposure 
to lead was high (Zapata et al., 2006; Aufderheide et al., 1992; Lewis, 1995) and are similar to those determined in the 
contemporary human population (Becker et al., 1968; Busetto et al., 2008; Miculescu et al., 2011). 

 

An interesting finding was the high copper concentrations found in Copper Age specimens (317.47 ± 588.92 
mg/kg d.w.), significantly higher than in Medieval individuals (22.20 ± 16.38 mg/kg d.w.; Mann-Whitney U=6; 
p<0.05).  The greatest contribution to the total was from a humerus sample with a content of 1368.64 mg/kg d.w., 
which, excluding diagenetic enrichment, was unlikely to come from use of copper utensils but rather from exposure to 
copper smelting or other source of contamination (Pyatt et al., 2004; Pearce, 2007; Giardino, 2002).  The mean copper 
concentration is much higher than those reported in other studies.  Grattan et al., (2005) in femurs from a mining and 
smelting area in the Jordanian desert, dating back to 1500 BC, reported copper levels in the range of 10-120 ppm d.w..  
Koizumi et al., (2009) reported high concentrations of copper of 220 mg/kg d.w. in a Medieval subject exposed to 
copper fumes during the casting of statues. Recently, Güner et al., (2011) in Central Anatolian Early Bronze Age 
human bones found copper levels ranging 1.99 to 396.46 mg/kg d.w.. 

 

Cadmium levels (Fig. 6) in Medieval (0.09 ± 0.01 mg/kg d.w.) and Copper Age femurs (1.51 ± 1.5 mg/kg 
d.w.) were in line with reports from humans living prior to the modern age (Martinez-Garcia et al., 2005; Baranowska 
et al., 1995).  In modern man Cd levels are about ten times higher than those found in the present study (Jaworowsky 
et al., 1985; Miculescu et al., 2011). 
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The significantly higher levels of manganese in femurs of Copper Age individuals are difficult to interpret, 
because while not significantly correlated with other elements of lithogenic origin (Al, Fe, Ti) they could be influenced 
by diagenetic enrichment as shown by multivariate analysis (Fig. 3).  As reported in the literature, Mn is very 
susceptible to diagenetic enrichment (Lambert et al., 1984). 

 

Zinc concentrations, which were significantly higher in Copper Age specimens (Mann-Whitney U=8; 
p<0.05), usually indicate diets rich in animal proteins.  The first evidence of milk processing dates to the Copper Age, 
accompanied by an increase in animal protein intake (Bartoli and Bacci, 2009; Hatch and Geidel, 1985).  In the Late 
Medieval Period, a diet rich in vegetables was associated with greater accumulation of strontium than of zinc (Sillen 
and Kavanagh, 1982).  Zinc levels and their relation to calcium are discussed in next section. 
 

3.5 Dietary assessment 
 

In the course of human life, trace elements tend to replace calcium in the structure of calcium phosphate.  
Variations in calcium content are evidence of non physiological accumulation.  In the present study, no significant 
differences in calcium percentage were found between the two epochs (37.92% Late Medieval Period; 38.14% Copper 
Age) suggesting similar physiological status.  These values reflect the normal calcium content of human bones (Takata, 
2005) (Figure 4). 

 

After excluding the possibility of diagenesis for calcium, we were able to apply a correction based on Sr:Ca 
and Zn:Ca ratios, using these elements as dietary markers (Bartoli and Bacci, 2009).  Strontium and zinc represent 
prevalently vegetarian (Sillen and Kavanagh, 1982; Comar and Wasserman 1963; Toots and Voorhies, 1965) and 
carnivorous (Hatch and Geidel, 1985) diets and do not seem to be subject to diagenesis (Lambert et al., 1983; Price et 
al.,1985; Sillen, 1981).  Thus these ratios were used to standardize the data for comparison of the two epochs (Bacci et 
al, 2008; Bartoli and Bacci, 2009; Nriagu, 1998, Bisel, 1980) in order to detect any differences in dietary customs.  The 
results showed that Sr:Ca ratios (Fig. 7) were significantly higher (Mann-Whitney U=0; p<0.01) in Late Medieval bone 
samples, indicating a diet prevalently based on plant foods (Toots and Voorhies 1956; Comar and Wasserman 1963, 
Bartoli and Bacci 2009).  On the other hand, Copper Age bone samples showed a significantly higher Zn:Ca ratio 

(Mann-Whitney U=0; p<0.01) (Fig. 7) indicating a diet rich in animal proteins (Mirce, 1984). 
 

Figure 7 -  Sr:Ca and Zn:Ca ratios in Copper Age and Late Medieval bone samples. 
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4. Conclusions 
 

The use of small inverter-controlled burrs allowed a non invasive bone sampling, minimizing the amount of 
material removed from the specimens. Sampling the femur soil enabled direct comparison with trace elements in the 
two matrices by multivariate analysis.  

 

This provided an assessment of the entity of diagenetic processes, which proved to be minor, if not absent, 
for Pb, Zn, Cu, Sr, Cd, Cr, Ni and Ca.  An interesting result was the high Cu content  (1368.64 mg/kg  d.w.) found in 
one humerus of a Copper Age individual, which if not caused by diagenetic enrichment, was presumably due to 
exposure to the fumes of copper smelting. Thus, these results offer interesting insights into the methodology, since 
determination of metal levels, in this case copper, in skeletal specimens may in itself be a valid indicator of the 
presence of smelting in a given site, even in the absence of other archaeological evidence. This method, which 
requires further study and confirmation, could be applied in the future not only to human bones (generally not easily 
available) but also to animal bones. The copper content in bones of sedentary domestic species, such as pigs, could, 
perhaps, be used as a proxy datum for recognizing the occurrence of metallurgical activity in Eneolithic and Bronze 
Age sites, even if other signs are lacking. 

 

The comparison of trace element levels in femur and humeral bones in the Late Medieval specimens did not 
show any differences in calcium content.  This was expected, as the physiological process of hydroxyapatite formation 
is practically uniform, in the absence of diagenetic depletion.  The absence of significant differences in Pb, Zn, Cu and 
Sr between femur and humerus indicated that these elements accumulated and were distributed evenly in the two 
districts.  Although lead levels in humeral bones varied widely, they seemed to be higher than in femurs. This 
difference could be due to soil contamination or, as reported in the literature, to different physiological rates of 
accumulation, since metabolic turnover may vary in different parts of the body, affecting concentrations of trace 
elements.  Generally the robustness of the femur with respect to other bones, enables it to better resist diagenesis. The 
choice of sample is therefore fundamental for obtaining reliable palaeonutritional data. 
 

The study of palaeodiet by analysis of Sr:Ca and Zn:Ca ratios indicated that the Late Medieval subjects had a 
prevalently vegetarian diet and that Copper Age subjects had a diet based mainly on meat and animal products. As 
reported in the literature, these results are in line with archaeological evidence about food customs of the two epochs.  
Indeed, there is clear evidence of an increase in animal proteins (perhaps also from milk and its by-products) since the 
beginning of the Copper Age, compared to the more vegetarian diet of the previous Neolithic period (Bartoli, 1993; 
Bartoli et al., 2005; Mallegni, 2001). Moreover, the Eneolithic diet could change depending on sex and/or wealth, 
revealing the emergence of stratified and socially differentiated communities, as displayed by the analyses on several 
specimens from the necropolis of Piano Vento in Sicily (Fornaciari and Bartoli, 1995). During the Bronze Age diet 
characteristics remained essentially unchanged whereas, with the Iron Age, protein intake considerably decreased as 
reflected by increased accumulation of strontium in bones (Bartoli et al., 2005, Bartoli and Bacci, 2009). This food 
choice could have been due to the improvement of agricultural techniques and the consequent increased availability of 
plant products, but more articulated social and economic reasons cannot be excluded. 

 

In the Late Medieval Period, diet was mixed and balanced, but the high values of strontium indicate a 
prevalence of plant products. These results are consistent with those known for the Late Medieval period in general 
(Bartoli and Bacci, 2009, Le Goff, 1967; Mallegni et al., 2004). In Medieval society oxen and horses were mainly 
employed as working power in agriculture and were slaughtered for food only at the very end of their working cycle. 
This is one of the reasons why noble protein consumption from meat was usually sporadic among most medieval 
people (Mallegni et al., 2004). Further analyses on human remains (e.g. dental meso- and micro-wear), are in progress 
in order to confirm this interpretation by means of cutting-edge methods, such as 3D microscopy (Arrighi et al. 2016; 
Oxilia et al. 2015). 
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